

Entanglement Theory - Part 2

Mixed state entanglement is more complicated... (is unsolved)

Entanglement Witnesses

The set of bipartite ^{separable} quantum states

$$\mathcal{D}_{\text{sep}} = \left\{ \rho_{AB} \text{ s.t. } \rho_{AB} = \sum_{\mu} p_{\mu} \sigma_{\mu}^A \otimes \tau_{\mu}^B \right\}$$

prob. dist.

Entanglement entropy clearly
isn't a good measure in this
case! $\text{Tr}[\rho^2]$ & $\text{Tr}[\rho^3]$
have same entropy!

form a convex set \mathcal{S} is contained in the larger set
of all bipartite quantum states \mathcal{D} .

Hahn-Banach Corollary

Given a closed convex set C and a point x outside C
there exists a hyperplane P that separates x from C .



Recall, a hyperplane P is defined by
some vector v orthogonal to the plane

$$\text{s.t. } P = \{ x : \langle x, v \rangle = 0 \}$$

One side of P will be the points
 $\{ x : \langle x, v \rangle > 0 \}$ & the other
 $\{ x : \langle x, v \rangle < 0 \}$.

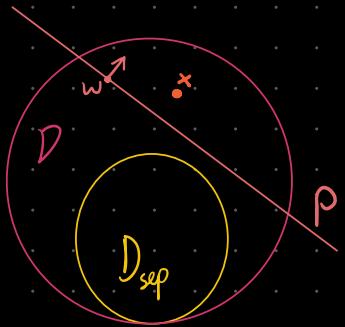
As D_{sep} is itself a convex set the Hahn-Banach corollary applies to it!

The relevant vector space = all states & observables on AB set in space of all $d^2 \times d^2$ Hermitian matrices

Inner product = Hilbert-Schmidt inner product $\text{Tr}(XY^\dagger)$

From H-B, given an entangled state ρ_{AB} there exists a hyperplane P in the space of Hermitian operators that separates ρ_{AB} from the space of separable states.

This hyperplane is defined by some Hermitian operator W which we call an entanglement witness



An entanglement witness W is a Hermitian observable such that $\text{Tr}(W \rho_{AB}) \geq 0 \quad \forall \rho_{AB} \in D_{\text{sep}}$

∴ if we can find such a W (& we can find such a W for any entangled state) if we find $\text{Tr}(\rho_{AB} W) \leq 0$ we know that ρ_{AB} is entangled!

But, more generally, if we are told that W is an entanglement witness & s.t. $\text{Tr}(W\rho_{AB}) > 0$ ρ_{AB} could be entangled or unentangled.

The Perez - Horodecki Criterion

Summarising pgs. 26 - 38 in Smits...

Core idea - Remember the Choi - Jamiołkowski representation

Any channel can be associated with the positive operator

$$\mathcal{J}(\phi) := \phi \otimes \mathcal{I} (|\text{vec}(\mathcal{I})\rangle\langle \text{vec}(\mathcal{I})|)$$

Well the converse is also true... can associate positive operators with a channel...

$$\phi(x) = \text{Tr}_2 ((\mathcal{I} \otimes x^\top) \mathcal{J})$$

We can use this equivalence to convert the statement that we can always find a positive operator W s.t. if $\text{Tr}(W\rho_{AB}) \leq 0$ then ρ_{AB} is entangled into a statement seeing able to find the superoperators.

but not necessarily completely positive!

A state σ_{AB} is entangled iff there exists a positive superoperator Φ such that $(\Phi \otimes \mathcal{I}) \sigma_{AB}$ has a negative eigenvalue.

(for proof see typed notes.)

If \mathbb{E} is completely +ve then by definition $(\mathbb{E} \otimes \mathbb{I}) \rho_{AB}$ has only +ve eigenvalues...

So \mathbb{E} will need to be +ve but not completely +ve

Key example of such a channel, as we saw before, is the transpose ...

becomes iff for 2-qubit state

A quantum state ρ_{AB} is entangled if $(T \otimes \mathbb{I}) \rho_{AB}$ has a negative eigenvalue.

We can define the 'negativity' of a quantum state as a 'measure' of mixed state entanglement

$$N(\rho_{AB}) = \frac{1}{2} \sum_k |\lambda_k| \quad \left. \begin{array}{l} \text{sum of absolute value} \\ \text{of the negative eigenvalues} \\ \text{of } \rho_{AB} \end{array} \right\}$$

For qubits, we have that every positive superoperator ϕ can be written as

$$\phi(X) = \mathcal{E}_1(X) + \mathcal{E}_2(X^T)$$

where \mathcal{E}_1 and \mathcal{E}_2 are completely positive maps & X^T is the transpose of X